Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 19(1): 2310977, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38493508

RESUMO

Electrophysiology in plants is understudied, and, moreover, an ideal model for student inclusion at all levels of education. Here, we report on an investigation in open science, whereby scientists worked with high school students, faculty, and undergraduates from Chile, Germany, Serbia, South Korea, and the USA. The students recorded the electrophysiological signals of >15 plant species in response to a flame or tactile stimulus applied to the leaves. We observed that approximately 60% of the plants studied showed an electrophysiological response, with a delay of ~ 3-6 s after stimulus presentation. In preliminary conduction velocity experiments, we verified that observed signals are indeed biological in origin, with information transmission speeds of ~ 2-9 mm/s. Such easily replicable experiments can serve to include more investigators and students in contributing to our understanding of plant electrophysiology.


Assuntos
Fenômenos Eletrofisiológicos , Humanos
2.
Nat Neurosci ; 26(11): 1894-1905, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783895

RESUMO

Inhibitory interactions between opponent neuronal pathways constitute a common circuit motif across brain areas and species. However, in most cases, synaptic wiring and biophysical, cellular and network mechanisms generating opponency are unknown. Here, we combine optogenetics, voltage and calcium imaging, connectomics, electrophysiology and modeling to reveal multilevel opponent inhibition in the fly visual system. We uncover a circuit architecture in which a single cell type implements direction-selective, motion-opponent inhibition at all three network levels. This inhibition, mediated by GluClα receptors, is balanced with excitation in strength, despite tenfold fewer synapses. The different opponent network levels constitute a nested, hierarchical structure operating at increasing spatiotemporal scales. Electrophysiology and modeling suggest that distributing this computation over consecutive network levels counteracts a reduction in gain, which would result from integrating large opposing conductances at a single instance. We propose that this neural architecture provides resilience to noise while enabling high selectivity for relevant sensory information.


Assuntos
Drosophila , Percepção de Movimento , Animais , Neurônios/fisiologia , Sinapses/fisiologia , Percepção de Movimento/fisiologia , Vias Visuais
3.
J Neurosci ; 43(14): 2497-2514, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36849417

RESUMO

An important step in neural information processing is the transformation of membrane voltage into calcium signals leading to transmitter release. However, the effect of voltage to calcium transformation on neural responses to different sensory stimuli is not well understood. Here, we use in vivo two-photon imaging of genetically encoded voltage and calcium indicators, ArcLight and GCaMP6f, respectively, to measure responses in direction-selective T4 neurons of female Drosophila Comparison between ArcLight and GCaMP6f signals reveals calcium signals to have a significantly higher direction selectivity compared with voltage signals. Using these recordings, we build a model which transforms T4 voltage responses into calcium responses. Using a cascade of thresholding, temporal filtering and a stationary nonlinearity, the model reproduces experimentally measured calcium responses across different visual stimuli. These findings provide a mechanistic underpinning of the voltage to calcium transformation and show how this processing step, in addition to synaptic mechanisms on the dendrites of T4 cells, enhances direction selectivity in the output signal of T4 neurons. Measuring the directional tuning of postsynaptic vertical system (VS)-cells with inputs from other cells blocked, we found that, indeed, it matches the one of the calcium signal in presynaptic T4 cells.SIGNIFICANCE STATEMENT The transformation of voltage to calcium influx is an important step in the signaling cascade within a nerve cell. While this process has been intensely studied in the context of transmitter release mechanism, its consequences for information transmission and neural computation are unclear. Here, we measured both membrane voltage and cytosolic calcium levels in direction-selective cells of Drosophila in response to a large set of visual stimuli. We found direction selectivity in the calcium signal to be significantly enhanced compared with membrane voltage through a nonlinear transformation of voltage to calcium. Our findings highlight the importance of an additional step in the signaling cascade for information processing within single nerve cells.


Assuntos
Cálcio , Drosophila , Animais , Feminino , Cálcio/metabolismo , Drosophila/fisiologia , Neurônios/fisiologia , Transdução de Sinais , Retroalimentação Fisiológica , Estimulação Luminosa/métodos
4.
Animals (Basel) ; 12(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35804583

RESUMO

It is common to observe play in dogs, cats, and birds, but have we been ignoring play in one of the most common house pets of all… fish? Aquarium fish are often used as meditative decoration in family households, but it could be that fish have similarly diverse behavioral repertoires as mammals and birds. To examine this theory, we conducted field tests at local pet stores where a range of aquarium fish species was tested for responsiveness to laser pointer stimuli. Out of 66 species of fish tested, over 80% showed a tendency to be interested in the moving laser spots, particularly red ones. Whether this behavior constitutes play is an active topic of investigation that we examine in this work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...